Electro-Viscous Effects on Liquid Flow in Microchannels.

نویسندگان

  • Ren
  • Li
  • Qu
چکیده

The presence of the electrical double layer near a solid-liquid interface results in the electro-viscous effect on pressure-driven liquid flow through microchannels. The objective of this paper is to examine the magnitude of the additional flow resistance caused by the electrokinetic effect in microchannels. Deionized ultrafiltered water, 10(-4) and 10(-2) M aqueous KCl solutions, 10(-4) M AlCl(3) solution, and 10(-4) M LiCl solution were used as the testing liquids. Carefully designed flow measurements were conducted in three silicon microchannels with a height of 14.1, 28.2, and 40.5 µm, respectively. The measured dP/dx for the pure water, the 10(-4) M KCl solution, and the 10(-4) M LiCl solution was found to be significantly higher than the prediction of the conventional laminar flow theory at the same Reynolds number. Such a high flow resistance and the resulting high apparent viscosity strongly depend on the channel's height, the ionic valence, and the concentration of the liquids. The zeta potentials for the liquid-solid systems were calculated by using the measured streaming potential data. The experimentally determined dP/dx approximately Re relationships were compared with the predictions of a theoretical electro-viscous flow model, and a good agreement was found for pure water, 10(-4) M KCl solution, and 10(-4) MAlCl(3) solution systems. The present electrokinetic flow model cannot interpret the flow characteristics of the LiCl solution. Copyright 2001 Academic Press.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Effect of Viscous Dissipation and Variable Properties on Nanofluids Flow in Two Dimensional Microchannels

Laminar two dimensional forced convective heat transfer of Al2O3 –water nanofluid in a horizontal microchannel has been studied numerically, considering axial conduction, viscous dissipation and variable properties effects. The existing criteria in the literature for considering viscous dissipation in energy equation are compared for different cases and the most proper one is applied for the re...

متن کامل

WaLBerla: Investigation of Electrostatic Effects in Particulate and Electro-Osmotic Flows

The understanding of electrokinetic transport of fluid or particles in microchannel plays an important role in the design and the optimization of microand nanofluidic devices. Two important electrokinetic phenomena are electro-osmosis and electrophoresis. In order to study these phenomena, the lattice Boltzmann solver is coupled with the iteration solver for the Poisson equation. Using these nu...

متن کامل

Numerical Study of Non-Newtonian Flow Through Rectangular Microchannels

A numerical investigation was carried out to solve the flow dimensionless partial differential equations through rectangular microchannels. A purely viscous power law <span style="font-size: 10pt; colo...

متن کامل

Viscous Fluid Flow-Induced Nonlocal Nonlinear Vibration of Embedded DWBNNTs

In this article, electro-thermo nonlocal nonlinear vibration and instability of viscous-fluid-conveying double–walled boron nitride nanotubes (DWBNNTs) embedded on Pasternak foundation are investigated. The DWBNNT is simulated as a Timoshenko beam (TB) which includes rotary inertia and transverse shear deformation in the formulation. Considering electro-mechanical coupling, the nonlinear govern...

متن کامل

بررسی عددی اثر تلفات اصطکاکی و زبری سطح بر جریان سیال و انتقال‌ حرارت در میکروکانال‌ها با استفاده از بسط اختلالات

In this paper, viscous dissipation and roughness effects on heat transfer and fluid flow are investigated in microchannels using perturbation method in slip flow regime. The flow is considered to be laminar, developing thermally and hydrodynamically, two-dimensional, incompressible and steady-state. The working fluid is air, flowing between two parallel plates. The equations obtained from devel...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of colloid and interface science

دوره 233 1  شماره 

صفحات  -

تاریخ انتشار 2001